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SCALE FREE REDUCED RANK IMAGE ANALYSIS

Suppose we have given an N x n data matrix X of

rank P. For convenience, we assume that the origins and

scalings of the n variables are such that the n x n corre-

lation matrix R is given by

R = X,X (1)

To begin with, we make no assumptions about the rank of X

or the relative values of N and n. In particular, we may

have N. n. We let D be an n x n, basic diagonal, scaling

matrix, otherwise at present unspecified, and define

W =XD

We let.

G = 1111,W

.Hence from (1), (3), and (4)

G = DRD

( 3)

( 4 )

(5)

The general problem of approximating the matrices 1E and

W and their corresponding covariance matrices R and G have

been extensively treated over the years in books and articles

on factor analysis techniques and applications, and the liter-

ature is too voluminous and well known to require specific

references. However, a distin3tion has been drawn and given

major emphasis by some investigators between principal compon-

ent analysis and factor analysis. Unfortunately, the distinc-

tion has for the most part been discussed with reference to the

covariance matrices rather than the data matrices and, as a



consequence, considerable confusion and controversy has re-

suited with reference to the implications of the distinction

for the data matrices. Horst ( /g6 9) has recently attempted

to unify the various proposed models of principal component

and factor analysis by showing that they may be regarded as

special cases of a more general approach which utilizes variable

parameters for scaling and loss functions. As a procedure for

reconciling the various proposed matrix approximation models,

our generalized factor analysis appears to ha'ze some merit.

However, it does fail to include as a special case an impor-

tant model introduced by Guttman (Ig5:3) and elaborated by

Harris (/962) known as image analysis. The Guttman model has

fundamental and important implications from the prediction

point of view and, if one takes the position that prediction

is the ultimate goal of science, these implications assume

overriding importance. Perhaps the most important feature of

the Guttman-Harris model has to do with the particular trans-

formation that is applied to the data matrix. This transfor-

mation is such that each column of the transformed matrix is

the best least squares estimate of the corresponding column

of the data matrix as estimated from the remaining columns.

As Harris has show a, the model can be generalized so that

it is scale free, and this scale free model has interesting

invariant properties with reference to the matrix of trans-

formed variables. The model, however, has two serious limita-

tions. First, it assumes that the correlation or covariance

matrix is basic. A necessary though not sufficient condition

for this assumption to hold is that. N 7 n, or that the number



of entities is greater than the number of variables. In many

important cases of actual data, this assumption is not satis-

fied.

In the second place, the model assumes there are no errors

of measurement in a data matrix that samples some domain of

entities and attributes.

We shall develop a more generalized model of the image

analysis type that is free of these two assumptions. We let

v and u be n x m basic matrices where m /0 and define

an n x n matrix B by

We let

where

. B = vu' (6)

= (DB + I)

DB = diag (B)

Also we define

Z = WB

and

Y = W(B - DB)

From equations (6) and (9) it is clear that the rank of

Z cannot be greater than m. From equation (10) it is clear

that each column of Y is independent of the corresponding

column of W and hence also of X. This property of Y cor-

responds to that. of the transformed data matrix in the tradi-

tional image analysis model. In that model, however, the B

matrix is taken as basic.



We next define an N x n residual matrix e by

e = W - Y (11)

From equations (7), (10), and (11)

e = B) (12)

We let

and

96 = tr e'e (13)

= + trA d (14)

where d is a diagonal matrix of Lagrangian multipliers. We

wish to minimize 4) with the constraint (7). Therefore we

take the symbolic derivative of 0 with respect to the matrix

v and equate to zero, viz.

sv22/1 = 0
a

Now from (6) and (7)

(15) trild = tr. (vu'd) + tr d

From (4), (6), (12), (13), (14), and (15)

( 16) = tr( Vu Guv vu Guy, + 42 + vu'd d)

From (14a) and (16)

(17) u'Guv° = uqQ4 d)

From (17)

(18) v' = (ulGu) -lu,(GA -

From (6) and (18)

(19) B = u(utGarlut(G4 d)



Let

(20) S = u(u,Gu)'lut

From (19) and (20)

(21) B SGA Sd

Suppose now we assume that the scaling matrix D in

(3) and (5) can be chosen so that B is symmetrical, that is,

:(22) B = Bo

A sufficient condition that (22) be satisfied is obviously

that SG is symmetrical and that A and d be scalar matrices,

since by (20) S is symmetric. Suppose we indicate the basic

structure of G by

(23)
'111

G.Q
111 111

+ Q 6 Q'

where

(24) m s e

A sufficient condition that SG be symmetrical is that

(25) u = Qm c

where c, is any m x m basic matrix. That (25) is also

necessary is the case if we let Sm contain any m nonvan-

ishing roots of G, and Qm the corresponding vectors. However,

we shall take these to be the m largest and later justify

this choice. From (20), (23), and (25)



(26) S = Qm 8111- Qm'

(27) SG = Qm Qm'

From (21), (26), and (27)

(28) B = Q111.001 Qm
-1 QM' 4

Now so far we have put no restrictions on D in (3) and

(5). Let us assume that D can be determined so that

(29) 11 = If

where f is a scalar quantity. tcause of (22), (28), and (29)

we must also have

(30) d = Ia

where a is a scalar. From (28), (29), and (30)

(31) B =QM QM° f - m 8 -1 Qm' a.

From (7) and (29)

(32) DB = (f - 1)I

We shall now determine a as a function of f. From

(31) and (32) we have

(f - 1)n = mf - a tr 5 -1
m

From (33)



(34) a =
tr 8

m
-1

To determine f we first write from (29)r ( 31) and (34)

(35) (4- B). (I - QmQmOr +11- (n-7-11111C2 -1Q.
tr 8m-1 m m m

From (4), (12), and (13)

6) 130G(6 D)

From (22) and (36)

(37) 4 = tr(r.--(A - B)4)

From (35)

(38)' (11 ,, B)2 = Qm Qint )f (n (n DIE
tr -1

f)2 -2

Q

From (23) and (38)

(39) G(A, µ B)2 = (G - Qm kti Qui )f (11.--7121-=-11)1) 2 Qm m1- Qm
t

tr m-1

From (5), (37), and (39)

(40) $1)=, (tr D2 - tr 8111)f9'4. 1.12-:=-Sn
-Eelf)2,

tr

For convenience we constrain D so that

(41) tr D2 = n

From (5), (23), and (41)

(4.i.c.) tr tr Ss = n



Since we wish to minimize 4, we set

(42) g = 0

From (40) and (41}

(43) 0 (n tr Sm)f

From (43)

(.44.) f

Now let

n m)(n
tr

m
-1

'n tr 5M) tr 5 -1 -1-
m

n tr Sm
(44a) - n m

- m)2

It is clear then that 0( is the mean of the n - m smallest

roots of G. From (44) and (45)

(44b) :f =
oc tr Sm- (n- -

It is probably intuitively obvious. that the solution (44)

for f yields a minimum. For this to be the case we should

have

(45) 4> 0
df

From (43)

),

(46)
,

4-=, = (n tr Sim) (n
dr"

)2 / tr 5m-1

Except for the limiting case of n = m, which we shall consider

later, (46) does satisfy (45) since, because of (5), (23), and

(41), we must have n 5 tr



If now we substitute (44) in (34), we get

tr5ra)

(47) a .

(n tr 5m) tr Sm
-1

kn - mi
2

From (44a), (44b), and (47)

(48) a =0Cf

Substituting (48) in (31) we get

(48a) B = Qm(I -ds 8m-1)Qmi f

If we let

(48b) dm = (I -
1)

we have from (48a) and (48b)

(49) Po= Qm dm (1.111, f.

It will now be of interest to find the covariance matrices

involving the matrices Z, Y, and e

(10), and (11), respectively.

From (4) and (9)

(50) = B'GB

From (4), (9), and (10)

(51) = B "G(B -

From (4), (9), and (11)

Z,1 = B,G(A - B)

given by equations (9),



From (4) and (10)

(53) Y'Y = (B' BB)G(B, DB )

From (4), (10), and (11)

(54) Y'e = (B' -

From (4) and (11)

D )G(A - B)

.(55) e'e = (A B')G(4 B)

Since B is symmetrical, it can be proved that B,

(B DB), and CA - B), together with G, are all commutative

for multiplication. Therefore we have from (50) through (55)

respectively

'(58) = GB2

(59) = dB(B - DB)

(60) Zee = GB(48 - B)

(61) Y'Y = G(B DB)2

(62) Y'e = G(B DB)(A -

(.63) e'e = G(I - B)2

Now from (32) and (49)

(64) B DB = (Qm dm Qm°

From (29) and (49)

(65) 4 - B = (1 - gm dm'Clml)f

Now from (49)

1
I f

/0



II

(66 j B2 Qm dm2 Qm' f2

From (49) and (64)

(67) B(B - DE) = Qm dm(dm I )Q f2

From (49) and (65)

(:(6-8) B(A- B) = Qm'dm(I dm)Qmf f2

From (64)

(69) (B - DB)2
m dm(dm - 2 g=-1

From (64) and (65)

Qin'
- 1 2 2

--y-- I)f

(70) (B D B) = -,(Qm am(dm - I)Q

From (65)

(7:1.) (A - B)2 -= (I 4- Qm am(dm 2I)C2mt)f2

f -+ 1 ,NO2

We may now write the covariance matrices given by (58)

though (63) as functions of G and of the corresponding

right sides of equations (66) through (71). We have from

these two sets of equations and equation (23)

2(72Y ZIZ =WL
rai

Qm ' f
2

m m

(73) ZrY. = Q
1 8 .

d (dm
I)Q 1 f2

.(74) Z'e = Qm Sm din(I dm)Qm, f
2



f lv 9.., + if - 1\2 ft\f2y tcy (Qm 'am din( dm 2 (--F"') 14m \--r/

(76) Y'e = -(Qm Sm dm(dm -
2rf - G)f2

(TO e'e = (G + Qra Sm dm(dm 2i)Qui°)f2

To further simplify the notation, we let

(78) g = Z'Z

(IO) E = Sm dm um°

Then substituting (78) and (79) in (72) through (77)

(80) ZIY = g - f(f 1)E

(82) Zoe = -g + f2E

(83) VY =.g 2f(f - 1)E + (f - 1)2G

(84) Y'e = -g + f(2f - 1)E - f(f-1)G

(85) e,e = g - 2f2E + f2G

We may nomrregard g as the rank m approximation to G,

the covariance matrix of W, which is the resealed data matrix

I. Then if we let

(86) A = Qm SmI(I

we have from (72), (78), and (86)

'.(87) g =



i3

and A may be regarded as the factor loading matrix.

The matrix A may be compared with the conventional basic

structure form

.(88) A = Qm

where A is the basic structure solution in our generalized

factor analysis with variable scaling and loss function par-

ameter; special cases of which have been shown to closely re-

Eemble, if not be identical to, a number of current factor

arilytic models.
A

We may now evaluate the Z, Y, and e matrices directly.

We let the basic structure of W be given by

(89) W = [pm , Ps Firm 0 'Irmo
0 S

0
Q
s

From (9), (49), and (89)

(90) Z = Pm Smi. dmLQ'f

From (10), (48b), (64), and (89)

1

91
1

(91) Y = Pm(b: fc48mQm' P$ Ss2 Qs'(f 1)

From (12), (48b), (65), and (89)

(92) e = (P 2
al

t P 8 2 Q Ofm S S S

It is clear from (90) that Z is of rank m, while from (91)

and (92) we see that Y and e are of rank n if X is

basic. It is also clear from (89) that

(93) Pm = WQ gm 1.
m

We may regard Pm as yet another type of score matrix.



ly

To sunimarize, we have then five types of score matrices

as follows:

(1) The W matrix is the X matrix rescaled so that

the B matrix calculated from the roots and vectors, as in-

dicated by (49), has the diagonal

(94) DB = (f - 1) I

where f is given by (44b).

(2) The Z matrix is the rank m approximation to the

W matrix by the B transformation on W.

(3) The Y matrix is the bast least square approximation

to the W matrix calculated from the Z matrix where each

Y vector is independent of the corresponding W vector. It

is important to note that B has been determined so as to

optimize this approximation in the least square sense.

(4) The e matrix is the matrix of residuals between

W and Y, and B is determined so as to minimize the trace

of its product moment.

(5) The Pm matrix is analogous to the principal axis

factor score matrix. It is in fact the principal axis factor

acore matrix for the rescaled data matrix W. The width of

this matrix is obviously only m whereas the other four ma-

trices are all of width n. This matrix is perhaps of most

practical interest among the five types.

To return to the covariance matrices (80) through (85),

to date their properties have been only briefly investigated.

Perhaps the most that can be said as of now concerns the traces

of Y'Y, Y'e, and e'e. By straightforward but somewhat

tedious manipulation, it can be proved that
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(95) tr = n - ckfn

(96) tr Y'e = 0

(97) tr e'e =0Un

It is clear therefore from (5), (41), (95), (96), and (97)

that

(98) tr Y'Y + tr ele = tr. G

which is as it should be.

We may now consider the case where n = m and R is

basic. In this case we must return to equations (31) and (32).

Equation (31) becomes simply

(99) B = fI- Qm .5m-1 Qm' a

From (32) and (99)

(100) B - D
B

= T - Qla

From (5) and (23)

(101)
0-1Q' D-1

n
--1 D-1

From (100) and (101)

(102) 0= I- D-1 D D-laR1

From (102)

(103) D2 = D aR-1

From (41) and (103)

(104) = -in/tr R-1



From (103) and (104)

. (105) D = D -1R
tr

Equation (105) is the same result obtained by Harris's scale

free modification of Guttman's image analysis model except for

the scaling factor tires .

If now R is of rank m where m< n, we have from (44)

.(106) f =
/i

n - m

and from (34) and (106)

(107) a = 0

From (31), (106), and (107)

(108) B = Q Qm n- m

From (32), (106), and (108)

n
(110) n m

= DQ
Q n - m
m m

From (110)

(m) M T
Q =mm'M

It.is seen therefore from (111) that if the R matrix is not

basic and m is taken as the rani of the matrix, then the

scaling of R must be such that the row vectors of the ver-

tical basic orthonormal Qm are all of equal length. That

this is always possible has not been proved, although it has

been proved for special cases. In any event, it appears to

date that this case is of more theoretical than practical

interest.
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Of more general and practical interest is the case where

m is less than the rank of R, whether or not R is basic.

Thus far we have ignored the question of how to determine m.

This of course is the question of how many factors to solve for

and although many answers have been proposed, none of them has

gained universal acceptance. The various tests of statistical

significance leave much to be desired. In our opinion, these

tests are founded on assumptions that are irrelevant or in-

appropriate for most important practical situations.

One of the simplest and most appealing criteria is the
(1 967)

one proposed by Kaiser and accepted by many as a good rule-of-

thumb procedure. It is the number of roots greater than unity

in the correlation matrix. This rule may be generalized to

the number of roots greater than unity in the matrix G as

defined in the foregoing developments. The smallest -root in

m of (23) would, according to this criterion, be greater than

unity and the largest root in Ss of (23) should not exceed

unity. As a first approximation one might start with the

Kaiser criterion, namely, the number of roots greater than

unity in the correlation matrix.

It may be of interest to examine the generalization of

the Kaiser criterion to the case of the G matrix. First let

us return to equation (97). From this we get

(112)
.tree' e f

From (98) and (112) we get

(113)
tr Y,Y



From (44a) and (44b)

(114) 0( f
- tr 8m)tr m

-1 (n m)2

To gain better insight into the properties of (114), we let

tr bm

n(n - tr 6 m) .

(115) /X

That is, /A is simply the mean of the m values in
re

We let

(116)
v2

tr s 2

t"-

,, 2

so that V is simply the variance of the values in ItIt

can be proved that

(117) tr -1 m 92= - (1 + /1-2- + 6)

where 6 is a positive quantity which tends to increase as

)? increases. We let

(118) X 124 + 6

2
iso that yalso increases as increases. From (114),

(115), (117), and (118)

(119) (Xf = n(n mp.)}1.

m(n mp) + (n m)51 m(n ROX

We let

(120) r (n mPa

From (119) and (120)

(121) of = (am -.1h )P
1 + (m- 2)14 r
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From (113), (120), and (121)

(122) Ilan (iu 1)27 1 + ( - 2) +r

From (112), (115), and (122)

(121\ .tr
(n - tr Sm) tr 6m

tr 'VT (tr 6m - in? (n tr &m)1)

SMS 111tamas

where

(3.24) 1 =

Since for a given m the ratio in (123) should be as small

as possible, the numerator term should be small and the de-

nominator term large. As all the roots in m approach equal-

ity, . in (123) approaches zero. For a given m the ratio

in (123) would then approach a maximum if these roots were the

m largest roots of G. That this would also be the case if

the m largest roots were not all equal is also probably true

but we have not found a mathematical proof.

Perhaps a44/ argument for choosing m as the number of

roots of G greater than unity is suggested by (92). Neg-

lecting the scaling factor f on the right, the right hand

term in the parentheses is precisely the basic structure form

of the residual matrix in the principal axis type solution.

The term on the left involves the remaining parts of the basic

orthonormals of P and Q of W in (89). The basic diagonal

of this matrix is dom -. We wish to suppress the component

of the e matrix, given by the first term orithe right of (92).

as much as possible. In particular, we wish to guarantee that

(124a) 4 1



and

(124b) 5m-1 G I

where (124b) implies that the inequality holds for each of

the diagonal elements. Obviously, because of (41a) and (44a),

a necessary and sufficient condition for both (124a) and

(124b) to hold is that Om consist of the roots of G greater

than unity.

To see how we might calcullte the D scaling matrix, we

proceed as follows. We let

(125) V' =.DU

(126) 0 = V(VIRV)-11/1

From (1) through (5), and (20), (125), and (126)

(127) S = D-10- D-1

(128) GS D'"1'{' RD

(120. tr 6 = tr(VIRV)1.

(;130) .tr57-1 = tr(VRO7*

From (31), (127), and (128)

.(131) B = D-1T RDf -

From (7), (32), and (131)

(132) D2(f - 1) = D;711

From (48) and (132)

(132a) D2(f - 1) = (D 11 D2 -ol,D0-)f

Let

.:' (133)
_ f 1

2.0



From (132) and (133)

(134) D2 = (D FI)- 1o(Dd.(DAR
. a

From (41) and (133)

135). n - tr(Din

From (44b) and (133)

(136) F = m Sm."

Let

-(137) Dm =

n

Q 'mm.

0

From (27), (128), (134), and x.137)

(138) D2 - (Dm - Fi)-la

and from (135) and (138)

(139) n - tr(Dm FI)-10(D -= 0 '

Without loss of generality, assume that the Dm values are

in descending order of magnitude. It can be proved that one

and only one F exists lying between each of the (n - 1)

adjacent pairs of Dm which satisfies (139). But (139) has

n roots. Because of the left side of (138) and since DO. is

positive definite, the matrix in parentheses must also be

positive definite. This obviously cannot be the case for any

F greater than the smallest value in Dm. The remaining root

must lie outside the range of the values in Dm. It cannot be

greater than the largest value in Dm since any such value

7.1



could not satisfy (139). It must therefore be smaller than

the smallest value in Dm and can therefore satisfy both (138)

and (139). Also because of (136), F must be greater than

zero.

Next we may write from (23) and (25)

(140) u = Gu(ulGu)-Ah

where h is any square orthonormal matrix. From (5) and (125)

.

(141) T.= D2RV(IT'RV)-2h

Equation (141), together with (126), (129), (130), (134), and

(135), provides the basis for the suggested iterative computing

algorithms to solve for the D scaling matrix, which in turn

provides the basis for all other computations. We let

(142) iw = R 1V

.(143). it it' = iVt

(144) i' iv-lit-1,v

(145) ic( = n - tr(it)

(146) n - tr((D FI)-1,0( D =0

(147) 1D2 = ( fro, iFI)-1cX D
i i

'(148) 14.1V = iD2iw it' -1



We begin with the basic structure solution of R given by

(149) R = qm dm gm' + qs d qs I

where m is the number of roots in R greater than unity.

We let

:(150) 0V = qm

Then

(151) cr= qui dmi .qm,

(152) == gm gm,

(153) 0d= n -trdrn
n - mi

(154) n - - -PC D
m
-1 ,) = 0

qmqm u qaqm

(155) 0D2 = (Dq - 0
D -1

m-m .q dm
q

m m

(156) 1V V
0
D2 Qm dm

Beginning then with i = 1 and using (156), one would iterate

with the computations (142) through (148) until hopefully D

stabilized.

It is possible that better procedures for solving for D

could be formulated. For example, in equation (128) GS is

symmetric. We might solve iteratively for the solution for D

which in the least square sense makes each approximation to GS

most nearly symmetric. For example, let

(157) M = R



Let

(158) mi M.= e

(159) D1 = VD

.(160) [(Dm fat.. ) _0

where the dot means elemental multiplication. It can be

shown that the V
D corresponding to the smallest root

in (159) is proportional to the D which minimizes the

trace of e'e in (158). What methods will be most efficient

in solving for D must await actual computational research.

ADDENDUM

Recently J8reskog* has presented a model for Image

Factor Analysis, together with computational procedures

for estimating the parameters of the model. The relation-

ships among the objectives and end results of his approach

and ours is not yet clear.

* JOreskog, K. G. Efficient estimation in image factor

analysis. Psychometrika, 34, 51-75, 1969.
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